567

The Structure of Rhenium Oxide–Alumina Metathesis Catalysts

A. K. Coverdale, P. F. Dearing, and Alan Ellison*

School of Science, Humberside College of Higher Education, Cottingham Road, Hull, N. Humberside, U.K.

The structure of rhenium(vii) oxide on alumina at loadings of 5 and 17.5% closely resembles that of crystalline rhenium(vii) oxide.

Three models describing the alumina-supported rhenium(VII) oxide structure active in olefin metathesis have been proposed: (i) a surface aluminium mesoperrhenate(VII) structure with surface anion vacancies and F-centres produced by Re^{6+} participation,¹ (ii) a uniform monolayer of Re_2O_7 covering the alumina surface,² and (iii) different adsorbed rhenium species

Table 1. Ion fragment intensities relative to ReO_2^{-1} .								
_	5%	17.5%		_5%	17.5%			
1	NH₄ReO₄-	Re_2O_7-	Re207-					
Fragment	Al ₂ O ₃	Al_2O_3	Re_2O_7	Al_2O_3	Al_2O_3			
ReO-	0.096	0.04	0.089	0.063	0.07			
ReO ₂ - a	1	1	1	1	1			
ReO_3^{-b}	3.48	5.21	17.0	12.3	16.2			
ReO ₄ - c	1.5	2.64	24.5	8.48	9.9			
Re ₂ O ₂ ~			trace					
Re ₂ O ₃ ~	trace	trace	trace					
$Re_2O_4^-$	0.022	0.020	0.055	0.066	0.021			
Re ₂ O ₅ -	0.082	0.08	0.23	0.16	0.046			
Re ₂ O ₆ -	0.036	0.03	0.058	0.03	0.016			
Re207-	0.024	0.02	0.013	trace	trace			
Re ₂ O ₈ -			0.016		trace			
Re ₂ O ₂ -			trace	trace	trace			
Re2010-		0.01	0.016	0.014	0.014			
$Re_{2}O_{11}^{-}$		trace	trace	trace	trace			
Re ₃ O ₂ -			trace					
Re₃O₃ [−]				trace	trace			
Re ₃ O ₄ -			trace	trace	trace			
Re₃O₅ [−]		trace	0.011	0.011	trace			
Re _s O ₆ -		trace	0.017	0.014	0.011			
Re ₈ O ₇ -		0.01	0.046	0.015	0.011			
Re _s O _s -		trace	0.016					
Re₃O ₉ −			0.013					
Re₄O-			trace					
Re₄O₂ [−]			trace	trace				
Re₄O₃ [−]			trace					

Table 1. Ion fragment intensities relative to ReO₂-

^a Rel. int. for $NH_4ReO_4 = 1$. ^b Rel. int. for $NH_4ReO_4 = 4.8$. ^c Rel. int. for $NH_4ReO_4 = 1.06$.

depending upon loading, $[ReO_4]_{ads}^-$ up to 13% Re_2O_7 , $[Re_2O_7]_{ads}$ greater than 13% Re_2O_7 .³

We have found that the negative-ion fast-atom bombardment secondary-ion mass-spectra, F.A.B.–S.I.M.S., of supported rhenium species are quantitatively similar to the spectra of the bulk, unsupported compounds. The samples are γ -alumina impregnated with aqueous ammonium rhenate(vII), dried at 110 °C, and subsequently calcined in dry air at 525 °C, producing Re₂O₇. Rhenium loadings are quoted throughout as % wt/wt Re₂O₇.

The intensities of the secondary ion fragments ReO_{-} , ReO_{2}^{-} , ReO_{3}^{-} , and ReO_{4}^{-} , relative to that of ReO_{2}^{-} , Table 1, show quantitative similarities between alumina- NH_4ReO_4 and crystalline NH_4ReO_4 and between alumina- Re_2O_7 and crystalline Re_2O_7 . Better correlations are shown for the higher loading samples.

The 5 and 17.5% samples of NH₄ReO₄-alumina also show the presence of significant amounts of Re₂O₇. Exceptionally, the intensity ratios for ReO₄⁻ and ReO₃⁻ for supported Re₂O₇ are more similar to that for crystalline NH₄ReO₄ where ReO₄⁻ > ReO₃⁻.

Table 2. Intensity ratios for fragments ReO₂ and AlO₂.

	ReO_{2^+} ; AlO+		ReO ₂ -: AlO-	
,	¹⁸⁵ Re	¹⁸⁷ Re	¹⁸⁵ Re	¹⁸⁷ Re
5% NH ₄ ReO ₄ -Al ₂ O ₃ 17.5% NH ₄ ReO ₄ -Al ₂ O ₃ 5% Re ₂ O ₇ -Al ₂ O ₃ 17.5% Re ₂ O ₇ -Al ₂ O ₃	0.055 0.0123 0.0116 0.0081	0.0043 0.0191 0.0092 0.0110	0.023 0.152 0.106 0.096	0.041 0.248 0.152 0.149

The lattice of discrete ReO_4^- tetrahedra would not produce significant secondary clusters containing more than one rhenium atom. In contrast the molecular chain structure of Re_2O_7 should and does produce characteristic Re_xO_y^- fragments with Re_2O_5^- and Re_3O_7^- predominating in intensity.

We conclude that decomposition of NH_4ReO_4 on alumina produces aggregates of Re_2O_7 lying on ReO_4^- clusters which are in intimate contact with the alumina. While this is at variance with previously proposed models, it is confirmed by similar studies of chromium oxide catalysts.⁴

Secondary cluster ions containing both Re and Al atoms were not observed although cluster ions from the support alone were common. There is therefore no evidence for aluminium mesoperrhenate structures or for Re_2O_7 monolayer formation.

The intensity ratios ReO_2 : AlO for both positive and negative ions show, Table 2, that for alumina- NH_4ReO_4 samples a marked increase occurs from 5 to 17.5% Re_2O_7 while for alumina- Re_2O_7 the ratio is independent of loading. During impregnation the surface coverage of adsorbed NH_4ReO_4 increases with loading but during calcination production of Re_2O_7 proceeds, increasing the depth of aggregation so that the exposed surfaces of rhenium and aluminium oxides are the same at both loadings.

We thank Drs. J. C. Vickerman and J. A. van den Berg, S.I.M.S. Consultancy Ltd., U.M.I.S.T., England for F.A.B.-S.I.M.S. and Humberside College of Higher Education for support.

Received, 21st February 1983; Com. 242

References

- 1 A. A. Andreev, R. M. Edreva-Kardijeva, and N. M. Nesher, Recl. Trav. Chim. Pays-Bas, 1977, 96, 23.
- 2 A. A. Olsthoorn and C. Boelhouwer, J. Catal., 1976, 44, 197.
- 3 R. Nakamura, F. Abe, and E. Echigoya, Chem. Lett., 1981, 51.
- 4 A. Ellison, J. Chem. Soc., Faraday Trans. 1, submitted for publication.